
June 2004 The Delphi Magazine 51

ProDelphi
Reviewed by Craig Murphy

Those of you who have taken a
look at the other goodies on

the Delphi 6 and 7 CDs may have
noticed a code profiling tool on the
Companion CD. However, if you are
anything like me, you probably
installed Delphi and went back to
work, ignoring all the additional
goodies that are ‘in the box’!

ProDelphi is a code profiling tool
for the Win32 and .NET versions of
Delphi, ie versions 2 through to 8.
It has a lengthy history stretching
back as far as 1998, and came
about after work on Turbo Profiler
ceased. This review used
ProDelphi 15.4, Delphi 6 and
Windows XP.

If your users are complaining
about application performance,
ProDelphi could be the tool for
you: its authors have used it
to increase application runtime
performance by 50%. In other
words, the amount of time the
application spent achieving its
end goal was reduced by 50%!
Basically, it ran a lot faster. If this
is for you, or rather for your users,
then please read on.

Profiling Basics
There are three basic types of
profiling: sampling, source instru-
mentation and machine code
instrumentation.

Sampling involves taking regular
snapshots where the profiler
works out which method is cur-
rently being executed. It is possible
that some methods will be ignored
because the interval between
snapshots is too long. Equally, the
precise execution time for a
method cannot be determined,
only a rough figure.

Instrumentation involves deco-
rating the source code with calls
to the profiler. It is arguably intru-
sive, but does provide us with
accurate execution times, and it
covers all methods unless told
otherwise. The cost of calling the
profiling functions, typically at the
start and end of a method call,

is consistent and can be measured.
This is known as ‘API overhead’.

Machine code instrumentation
leaves the source code intact but
decorates/augments the machine
code that the compiler creates.
Whilst you may believe that this
method offers the most accurate
and most precise means of timing
method execution, because of the
ways processor caches work the
imprecision of this method is
emphasised by the fact that the
profiling code may have to be
loaded into the processor’s cache.
Under these circumstances it is
very difficult to accurately derive
the API overhead.

There is a good graphical
description of each type of profil-
ing at the ProDelphi website:
www.prodelphi.de/sample.htm.

ProDelphi is a tool that instru-
ments or decorates code with pro-
filing instructions. Its authors have
gone to exceptional lengths to
ensure that the API overhead does
not skew the profiler’s results.

ProDelphi’s
Modes Of Operation
ProDelphi offers three types of
profiling: call count, function and
emulation.

Call count profil-
ing gathers usage
statistics relating
to the number of
calls a method
receives. Function
profiling works out
the average run-
time (or length of
execution) for
each method.

Emulation profil-
ing allows us to
simulate a slower
computer. This
is useful if your

development machines are all top
of the range, high spec, high per-
formance, etc. Users often have
considerably less powerful
machines, being able to ‘dumb
down’ your application to their
machine’s pace will help you
find (and remove!) bottlenecks
that might cause your users
frustration.

ProDelphi actually performs
each of these types of profiling
during each profiling session.

For reasons of performance,
ProDelphi does not offer a line-
by-line profiling mechanism.
Instead, for coverage profiling,
ProDelphi’s authors recommend a
product called Discover by
Cyamon Software [Look out for a
review of Discover next month! Ed].

Profiling By Instrumentation
Asking ProDelphi to profile an
application is an easy task. The
first thing we must do is define
PROFILE using Project | Options |
Directories/Conditionals. Our
second step is to load ProDelphi,
either via the Startmenu or via the
IDE integration: Tools | ProDelphi.

Figure 1 presents the ProDelphi
opening screen. ProDelphi’s user
interface is busy, to say the least,
but it is easy to use and does its
job well.

I chose to profile my largest (and
oldest) application. EstExpress is
an estimating application compris-
ing nearly 200,000 lines of code,

➤ Figure 1:
ProDelphi's
opening screen.

52 The Delphi Magazine Issue 106

100 forms and two InterBase data-
bases. One of the things that my
users complain about is the speed
of reporting: it works, it’s flexible,
it’s customisable, but they want
speed!

After defining PROFILE, it is neces-
sary to click on Figure 1’s Select
Project button. ProDelphi then
provides us with some information
about the compiler symbols,
switches, output directory, etc.
Clicking on the Profilebutton then
instructs ProDelphi to traverse
the selected project, augmenting
it, or ‘instrumenting’ it, with profil-
ing code. I chose to tick the Do not
change file dates checkbox simply
to stop Delphi wanting to reload
.pas files after they had been
augmented.

On the whole, the augmentation
process worked seamlessly on
vanilla .pas files. I did encounter an
occasion where it did not leave my
.dpr file in a state that it would
compile, but this issue is due to be
resolved in a future version. My
.dpr file is a little more convoluted
than normal: it has a one or two if
conditions wrapping up Applica-
tion.Run. It was not a showstopper:
a little bit of hand-crafting and it
compiled with profiling. I discov-
ered later that if I inserted redun-
dant BEGIN..END states around my
IF conditions, ProDelphi was much
happier.

After an application has been
augmented with profiling code, we
need to re-compile it then run it.
Whilst the application is running,
ProDelphi is monitoring which pro-
cedures and functions are invoked,
how long each one takes to run,
and in what order they are called.
This information allows the cre-
ation of output like that shown in
Figures 2 and 3, both of which we
will discuss later in this review.

Listing 1 presents an instru-
mented procedure from the
EstExpress application: the instru-
mentation code is shown in red. By
augmenting the .pas files in a pro-
ject, ProDelphi is able to call its
own library functions that record
how long each procedure or func-
tion takes to execute and how often
it is called.

It is possible to include standard
Delphi comments that instruct
ProDelphi to ignore specific
chunks of code. These comments
remain in the source code even

after ProDelphi’s profiling code
has been ‘cleaned’ or removed.
Clicking on Figure 1’s Clean
sources tab gives us the chance to
return our augmented source back
to its former glory, without any
profiling code added.

Granularity
ProDelphi’s primary unit of mea-
surement is CPU cycles, thus the
smallest measurable unit is 1 CPU
cycle. On a 1,000Mhz processor
this means that the smallest mea-
surable duration is 1 nanosecond.

Figure 2 presents ProDelphi’s
internal viewer. It shows which
methods consumed most proces-
sor time (or run time). As you can
see, the EstExpress report routine
is measured using seconds and
milliseconds, not nanoseconds!
The columns Run, Unit, Class, %,
RT-Sum, etc, are clickable and sort
the columns just as you would
expect.

If a particular method is called
more than once, the Av.RT column
would indicate the average
runtime consumed and the RT-Sum
column would indicate the total of
all the calls put together.

CallGraphs
Clicking on any of the methods
shown in Figure 2 opens a
CallGraph window. Looking back
to Figure 1, it is necessary to ask
ProDelphi to generate the data for
call graphs by ticking the appropri-
ate checkbox. Figure 3 presents
the CallGraph for the EstExpress
reporting routine. If it was not
obvious from Figure 2 (which it
was!), the layout of the CallGraph

procedure TfrmMain.Change(obState : TObsState);
var
Obs: TSubjectObserver;
I: Integer;

begin
{$IFDEF PROFILE}
asm DW 310FH; call Profint.ProfStop; end; Try; asm mov edx,1225;
mov eax,self; call Profint.ProfEnter; mov ecx,eax; DW 310FH;
add[ecx].0,eax; adc[ecx].4,edx; end;

{$ENDIF}
for I := 0 to FObservers.Count - 1 do begin
Obs := FObservers[I];
Obs.State := obState;
if Obs.Enabled then
Obs.Change;

end;
{$IFDEF PROFILE}finally; asm DW 310FH; mov ecx,1225; call Profint.ProfExit;
mov ecx,eax; DW 310FH; add[ecx].0,eax; adc[ecx].4,edx; end; end; {$ENDIF}

end;

➤ Listing 1: Instrumented code.

➤ Figure 2: It's easy to see where
the run-time is being spent.

June 2004 The Delphi Magazine 53

makes it very clear that _Format-
Detail is the culprit!

Items closer to the centre of the
CallGraph take more runtime than
those nearer the periphery. The
CallGraph viewer is a really nice
piece of work: it is fully clickable,
allowing the rapid drill-down into a
particular method. Often a method
is portrayed as being very slow:
using the drill-down features of the
CallGraph viewer we can home in
on the specific slow child methods
and classes or sub-routines. After
all, like most things, it is easier to
optimise smaller pieces of code,
than to try and optimise a larger
chunk.

Incidentally, the offending
_FormatDetail function relies on a
COM connection to Microsoft
Excel and that is why the perfor-
mance hit is noticeable. Experi-
ence has taught me that where
such a link between a Delphi appli-
cation and Excel is required, it is
better to write an Excel macro that
performs the same task as the
Delphi code: it is significantly
faster than the COM equivalent.

Download And Installation
ProDelphi is available in two fla-
vours: one is for Win32 versions of
Delphi (2 through to 7); the other is
for Delphi 8. Each download is
roughly 1.2Mb in size.

Costings And Availability
ProDelphi has two modes of opera-
tion: Freeware and Professional.
Freeware mode limits the number

of procedures and functions that
ProDelphi will profile to 20. The
Freeware mode also ignores any
assembler routines.

Registering ProDelphi provides
access to the Professional mode: it
allows profiling of up to 64,000
functions and procedures, and
opens up profiling of assembler
routines. The Professional mode
leaves the file’s date/time stamp
unchanged during the profiling
process. The Professional version
can be purchased via ShareIt for
€49.50.

For a tool that could help you
improve your application’s run-
time performance by significant
percentages, it is an absolute bar-
gain. Application performance is
something many users strive for:
imagine being able to shave up to
50% off the run time simply by per-
forming a handful of carefully
selected optimisations? ProDelphi
can help you achieve such a perfor-
mance gain, and for very little
financial outlay.

For your €49.50 you will receive
free updates for that platform: if
you own ProDelphi for Win32, all
updates for that version are free.
However, if you wish to use
ProDelphi with Delphi 8, you will
need to purchase another copy: it
is a different platform so warrants
the additional licence cost.

Help And Tutorials
ProDelphi’s documentation, both
printed and on-line, is excellent
and is very comprehensive. Some

parts of the documentation con-
tain spelling mistakes and some
interesting use of the English lan-
guage. However, given the cost
and the quality of the product, and
the fact its authors write and speak
better English than I do German, I
would not let this put you off pur-
chasing the Professional version.

Accompanying ProDelphi is a
41-page User Guide. This provides
a bit of the history behind Pro-
Delphi and profiling, a step-by-step
example, and explanations of the
file formats used. ProDelphi cre-
ates up to five files during the pro-
filing process. Whilst it is possible
to use the built-in ProDelphi view-
ers, having access to the file
formats lets us import the files into
other applications, such as a
database, for example.

Conclusions
ProDelphi is certainly a competent
product: it does what it says it will
do and that is to help optimise
your application’s runtime perfor-
mance. Within five minutes of
installing ProDelphi and asking it
to profile my largest application, it
had correctly identified the areas
that I should be concentrating my
efforts on. The CallGraph viewer is
an amazing tool in its own right:
being able to visualise code struc-
ture and the run time it consumes,
and being able to drill-down into
the code at the same a boon.
ProDelphi: €49.50 well spent.

Craig is an author, developer,
speaker, project manager and
Certified ScrumMaster. He spe-
cialises in all things XML, particu-
larly SOAP and XSLT. Craig is also
evangelical about Test-Driven
Development and Extreme Pro-
gramming. He can be reached via
email at: tdm@craigmurphy.com
or via his website at www.
craigmurphy.com

➤ Figure 3: ProDelphi can generate a CallGraph.

Resources
ProDelphi is available here:

www.prodelphi.de

Discover by Cyamon Software is
available here:
www.cyamon.com

